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Strategic analysis of the open field water maze [1] describes the process of classifying the swim path of an 
animal as it attempts to locate the submerged target platform. There is little consistency in the literature as to the 
number of strategies presumed to exist or the conditions which characterize each strategy. However the majority 
of established classification schemes [2,3] predict 3 main classes of search strategy, these are termed Spatial, 
Procedural and Random. Commonly used sub-divisions of these classes include Direct, Focal and Directed 
searches within the spatial class and Chaining or Scanning behaviour within the procedural class (see Figure 1). 
While search strategies of the open field water maze have been relatively well established there has been very 
little progress toward classifying the strategies associated with solving alternative tests of visuo-spatial working 
memory such as the Barnes maze [4] beyond basic segmentation into spatial, procedural and non-spatial groups. 

While historically the classification of search paths has been carried out through a process of manual scoring, 
there have been motions in the literature toward the combination of multiple behavioural metrics into 
discriminant functions which enable the automated and unbiased scoring of search strategies. In order to see 
widespread adoption however, a classification system must meet several challenges, most notably the issue of 
flexibility. Systems must adapt to differences in maze parameters across labs (Pool size etc.) and to genotype 
differences within the same search pattern. There are also considerable costs (ethical, legal and monetary) 
associated with repeating a previous study making it impractical to carry out new experiments in order for the 
experimental protocol to comply with the requirements of the discriminant function. Advances in high density 
storage have enabled labs to archive large volumes of behavioural data which a sufficiently flexible analysis 
system could be used to analyse without need for further experimentation. 

Presently the preferred method of automated strategy analysis is one of hierarchic sorting by testing multiple 
input parameters against arbitrary threshold values. If an individual path meets all criteria for a particular 
strategy it will be classified accordingly, if the track fails to meet the criteria it will then be disqualified and 
tested against the criteria for the next strategy down in the processing hierarchy. The weakness of such systems 
emerges when one strategy narrowly misses the threshold for classification and instead is falsely disqualified 
and wrongly assigned to another strategy. The first consequence of this flaw is that the strategies assessed 
further down the processing chain will be vulnerable to artificial dilation. The second is that minute changes in 
pool setup or animal behaviour can change the optimal threshold settings meaning that in a rigid system the 
criteria for classification can easily become incorrect disrupting the validity of the results. Here we present an 
alternative methodological approach to the use of “hard” thresholds and hierarchic sorting, substituting instead a 
highly flexible pseudo – fuzzy logic (see Figure 2) based sorting system. 1500 tracks from a pre-existing archive 
of animal behavioural data were manually scored and values for 11 different behavioural parameters were 
collected for each track. The tracks were then segregated by strategy and means / standard deviations of each 
parameter were calculated for each strategy. This data was then used to generate Gaussian membership 
functions which defined the expected input range for each parameter in each strategy. Rather than producing a 
binary pass or fail for any given input value these membership functions produce a degree of membership as 
their output. These outputs are then aggregated to produce a degree of confidence that a track belongs to a given 
strategy. This system allows for redundancy, meaning that a track can fail to meet selection criterion on a small 
number of individual parameters but still be correctly classified providing that its match on other parameters is 
sufficiently strong to counterbalance the error. This approach also allows the system to compensate for changes 
in pool parameters. Small changes are absorbed by the fuzzy sets while for large changes (such as cross-lab 
equipment differences) the Gaussian sets can easily be recalculated to match the experimenter’s setup using a 
small training set. 
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We will present a demonstration and comparison of 2 newly generated experimental software platforms which 
offer automated analysis of spatial search strategy. One of these systems is based on the conventional method of 
hard limiting. The other is based on the aforementioned fuzzy logic methodology. Each of these systems exists 
in two variants one optimized for the water maze and one for the Barnes maze. 

 

 

 

Figure 1. Generalization of a commonly used water-maze search strategy classification system. Parent classes are defined as 
spatial or non-spatial by the presence or absence of egocentric search behaviour respectively. Within the non-spatial parent 
class strategies are defined as either procedural or random. Finally individual strategies are defined by path-form. Direct = 
high efficiency linear search, Focal = focused search in close proximity to target, Directed = low efficiency axial search, 
Chaining = circular search path at fixed distance from pool wall, Scanning = search confined to pool centre, Random = high 
area coverage, no discernable strategy, Thigmotaxic = “wall hugging” behaviour. During learning of the spatial location of 
the platform, rodents typically migrate through these classes and become more accurate and spatial in their performance. 

 

 

 

Figure 2. Crisp (binary) and fuzzy logic. In a conventional logic system (A) a strategy is defined by whether input values are 
above or below arbitrary threshold limits. In this example a classification of strategy Type A requires an input value above 
70, Type B requires an input between 30 and 70 and Type C requires an input below 30. In this case a track in which all 
input parameters but one strongly indicate a Type A strategy is the best fit would still be disqualified from classification as 
Type A regardless of how small the distance from threshold is. In the fuzzy inference system (B) there is no clear point of 
distinction between Type A and Type B. instead there is a transitional zone where membership of multiple strategy types is 
possible. In example (B) when the input is 65 then the “degree of membership” of strategy Type A is 0.60 and Type B is 
0.25. The strategy indicated is the one, which has the highest cumulative degree of membership for all input parameters. 
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