
 

Proceedings of Measuring Behavior 2014, (Wageningen, The Netherlands, August 27-29, 2014).  

Editors: A.J. Spink, L.W.S. Loijens, M. Woloszynowska-Fraser & L.P.J.J. Noldus.  www.measuringbehavior.org  

 

Articulated Tracking of Humans by Video Technology 

Nico van der Aa1,2, Coert van Gemeren2, Remco Veltkamp2, Lucas Noldus1 

1Noldus Information Technology, Wageningen, The Netherlands. n.vanderaa@noldus.nl, l.noldus.noldus.nl 

2Utrecht University, Utrecht, The Netherlands. c.j.vangemeren@uu.nl, r.c.veltkamp@uu.nl 

Abstract 

Measuring a person’s behavior in any kind of domain by a computer system, starts with measuring and analyzing 

that person’s movements. Video technology provides an unobtrusive way of capturing this information. In this 

paper, we will focus on articulated tracking, which is the field of estimating and tracking the body pose of a person. 

A pose consists of the joints and rigid parts of a person’s skeleton at each frame. Alternatively, we use only the 

body orientation to estimate the direction at which a person is focused. We discuss the findings of our research on 

state-of-the-art methods in articulated tracking and body orientation estimation techniques with a distinct sensor 

setup to give researchers an idea of the challenges they might face for their application. 

Introduction 

To create tools for measuring human behavior in an automated way, the system must detect, track and analyze 

human motion. Camera technology provides a way to measure movements and activities in a scene unobtrusively. 

The field of capturing human motion is an important field within computer vision which is far from solved.  A 

camera gives an array of pixels, including RGB colors for video cameras, or depth information for structured light 

cameras. The algorithm will provide details of the detected people as joint positions and orientations (e.g. of the 

torso).  The main challenges are (1) to separate people in the foreground from the background by defining pixel 

regions which are unaffected by the endless amount of variability caused by clothing and background similarities, 

(2) to identify the limbs and cope with the symmetry of the kinematic structure of the human body, (3) to handle 

occlusions by objects, other people and self-occlusions, and (4) obtain these results in (near) real-time.  

For articulated tracking, the literature divides these approaches in model-based (or generative) approaches versus 

model-free (or discriminative) approaches. Model-based approaches rely on an explicitly known parametric human 

model, and match the image observations to this predefined model. The kinematics of the model provide the basic 

restrictions for the human shape, such as the tree-structured kinematic constraints between adjacent body parts 

(e.g. torso-upper half-limb connection). In contrast, model-free approaches estimate a pose directly from 

observation, without using an accurate 3D model. They use the fact that the set of typical human poses is far 

smaller than the set of kinematically possible ones and train a model that directly recovers poses from observable 

image quantities. As our intention is to develop a tool to measure human motion in any kind of application, we 

restrict ourselves to model-based approaches. From literature, we select three model-based approaches based on a 

different sensor setup: (1) a single video camera; (2) a system of multiple calibrated cameras and (3) a depth sensor 

using structured light. The underlying idea is that the sensor and algorithm choice depends heavily on the 

application. As an example, a depth sensor has a range up to 8 meters and the infrared light principle will not work 

in an outdoor environment. In this paper we share our findings with the selected approaches.  

For some applications, articulated tracking is not possible and also not needed. Think of a shopping center where 

many people walk around arbitrarily and we only want to know which direction they are facing or in which 

direction they are moving. Therefore, we have studied a state-of-the-art method for body orientation estimation. 
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Articulated tracking  

In our research we consider three types of sensor setups to capture human motion: (1) a single static video camera, 

(2) a system of multiple static and calibrated video cameras, and (3) depth sensors using structured light. As we 

are interested in developing a general tool that is independent of the application, there are no constraints imposed 

on the pose to be detected. To keep it feasible, only a single person is assumed to be in the scene. 

Monocular video camera 

A single camera only provides a projection of the real world on a 2D image plane. The best strategy is to capture 

the projection of the skeleton on the camera view, which is the so-called 2D human pose. Pictorial structures is a 

model-based technique to estimate such 2D human poses. A pictorial structures model for a human being consists 

of a collection of body parts with connections between certain pairs of parts. It is a class of graphical models where 

the nodes of the graph represent body parts, and edges between parts encode pairwise geometric relationships. The 

appearance term (node) models the probability of a part being present at a particular location and orientation given 

the input image. A prior models the probability distribution over the pose, constraining the estimated pose to be 

plausible in terms of human articulation. To enable efficient inference, often two (unrealistic) assumptions are 

made: (i) the appearance of a part is assumed independent of its pose and that of the other parts; (ii) the prior over 

pose is a Gaussian with ‘tree-structured’ covariance. However, the main challenge for 2D pose estimation is the 

depth ambiguity, which occurs for example when an arm is behind the torso. 

To estimate the 2D pose from videos, we analyzed the method of Ramanan et al. (2007), as it was tested on videos 

from various sources containing a wide range of activities and showing promising detection results at body part 

level accuracy. It employs pictorial structures in a tracking framework which includes a model-building phase and 

a detection phase. During the model-building phase the system selects a frame where the pose is distinctly present 

and all body parts are visible. This way it learns a model of the 

person who is to be tracked in the video sequence. In the 

detection phase, this model is applied to detect the current state 

of the pose in each frame of the video sequence. The main 

assumption of this method is that in both modules of the system, 

the scale of the person to be detected is known beforehand and it 

must remain approximately constant throughout the video. The 

system will not detect people wearing skirts, dresses or loose 

clothes, as body parts are modelled by rectangles. An example 

of the output is shown in Figure 1. 

We analyzed the original method in terms of robustness and performance with respect to the type of input videos 

and found that, in contrast to what is stated in the original paper, the method is highly dependent on the set of input 

parameters, which do not translate across different videos. We also showed situations where one set of parameters 

can lead to different results within the same video, and we found that the motion model can eliminate the necessity 

to manually adjust these parameters when processing a single video. As a conclusion, the method under 

investigation does not solve the problem of occlusions as common by monocular pose estimation. The reader is 

referred to Ursu (2013) for more details. 

Multiple static and calibrated cameras 

Another way of handling occlusions is by including more camera views. Parts of the person that are occluded in 

one camera view, may still be visible in other views. If the cameras are static and calibrated, we know where they 

are with respect to each other and we can link their views to the real world.  

Figure 1. Examples of monocular pose estimation. 
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We analyzed and extended the method presented by Gall et al. 

(2009), which is also a model-based pose estimation technique. The 

method estimates the pose by fitting a 3D model of the observed 

person to the images from the camera views. It accurately finds the 

skeleton pose and from this pose the mesh deformation is calculated 

by a three step algorithm. In the first two steps the motion of the 

skeleton and its shape are estimated. These steps consist of a 

combination of two optimization approaches: a local and a global 

optimization. For the local optimization a weighted least squares 

problem is solved to minimize the distance between the model and 

the silhouettes. The global optimization uses a combination of 

particle filters and simulated annealing to estimate the pose where 

the local optimization fails. Given the mesh model, camera 

calibration data and the camera video sequences, an accurate pose is 

estimated. The last step enhances the shape of the model to match 

the fine details of the observed person (like loose fitting clothes such 

as a robe or a skirt) in the images.  

Our implementation of this method provides accurate results as shown in Figure 2, but fails in some cases for small 

body parts like hands and feet. Both the local and global optimization are based on silhouettes, so a proper 

background subtraction is required. The main challenge is the computational effort. Especially the global 

optimization step requires many iterations, causing the time taken to estimate the pose in each frame to be in the 

order of minutes. For a more detailed discussion on this method see Resodikromo (2012). 

Depth sensor 

With the introduction of structured light cameras like the Microsoft Kinect sensor, cheap alternative ways of 

capturing a scene have become available. Instead of 2D features or 3D matching, 3D depth information is now 

directly available. SDKs like NiTE (www.openni.org/files/nite/) include simple tools for body pose tracking. 

Although the applications are restricted to situations where the person is fully in the field of view and at most 8 

meters away from the camera, NiTE provides a fast and relatively stable method for pose estimation. Similarly to 

the previous methods, the difficulties lie with the detection of the limbs as their appearance is the least distinctive 

and have the smallest dimensions, which result in wrong or lost detections of wrist and elbow joints. 

In our research on 3D hand and finger tracking Koetzier (2014), we applied the 3Gear tool (www.threegear.com). 

Although it is necessary to put the camera within a meter from the hands, it is possible to combine the skeleton 

tracking with finger tracking. As the development of these SDKs will continue and successors of the depth cameras 

will follow rapidly, this provides a good starting point for applications within the requested constraints. 

Body orientation 

Instead of estimating the full body pose, which still faces many open issues, we can also restrict ourselves to 

finding the body orientation, which often is a sufficient cue for analyzing a person's activity including the focus of 

attention. Based on Chen and Odobez (2012), the body orientation of multiple human targets is estimated from a 

video sequence, captured by the view from a single moving camera. Accomplishing this goal requires a few stages, 

including human body detection and tracking. Additional computation, such as determining real-world 3D position 

coordinates of the targets, as well as its velocity and direction, can improve the results. 

Estimating human body orientations can be formulated as a classification task with multiple classes of body angles. 

In the paper we discuss here, 8 angle classes are defined. We introduce a method that incorporates a set of different 

classifiers and cues, allowing us to be more flexible in choosing the classification methods, and to have the best 

Figure 2. Examples of multi-view pose 

estimation. The white dots are our results and 

the red ones are the results of Gall et al. (2009) 
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results obtained from the combined response from several classifiers (committee). The input are video frames on 

which human tracking is performed using the method described in Choi et al. (2012), which is preferred over other 

tracking methods, as the input is allowed originate from a single moving camera. Besides, the method is able to 

provide estimates for the positions of the human targets in real world coordinates. This information is particularly 

useful to determine the velocity direction and magnitude, of the targets. Aside from the coordinates of the targets, 

the method also returns bounding boxes of the targets. From these bounding boxes Histogram of Gradient 

descriptors are extracted. These are then supplied to several pre-trained classifiers such as a Neural Network and 

a Support Vector Machine, which give probability estimates for each of the 8 angle classes. 

In our implementation (see Ichim et al. (2014)) we add the face as an important cue to the overall orientation 

estimation, since it restricts the plausible angles. To include this information, face detection is performed on the 

bounding boxes. To maintain the consistency of the probabilistic framework, a uniform distribution, based on the 

presence or absence of a face, is generated. Other information is gained from velocity direction and magnitude, 

which is integrated in the framework by fitting a standard Gaussian distribution, centered on the velocity direction 

of an angle class in such a way that a relatively high velocity yields a high probability for the frontal direction, and 

a low probability for the other directions. A relatively low velocity yields the same probability for all directions. 

The response from all of the mentioned 

classifiers and additional cues are 

combined, and the final angle estimation 

the one with the highest probability. 

However, the final result is filtered using 

a sliding window to ensure temporal 

smoothness of the change in orientation 

over time. Compared to Chen and Odobez 

(2012), we were able to reduce the 

average error by more than 20 degrees and 

reduce the computation time by 400 times 

making this method near real-time. An 

example of the output is given in Figure 3. 

Concluding remark 

Human pose estimation from video technology remains a challenging field in computer vision due to occlusions 

in general, the dimensions of the different body parts and their variability in appearance. Obtaining human body 

orientation is feasible in real-time.     
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